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When two cylinders are counter-rotated at  low Reynolds number about parallel 
horizontal axes below the free surface of a viscous fluid, the rotation being such as 
to induce convergence of the flow on the free surface, then above a certain critical 
angular velocity SZ,, the free surface dips downwards and a cusp forms. This paper 
provides an analysis of the flow in the neighbourhood of the cusp, via an idealized 
problem which is solved completely : the cylinders are represented by a vortex dipole 
and the solution is obtained by complex variable techniques. Surface tension effects 
are included, but gravity is neglected. The solution is analytic for finite capillary 
number V, but the radius of curvature on the line of symmetry on the free surface 
is proportional to exp (-32nV) and is extremely small for V 2 0.25, implying (in a 
real fluid) the formation of a cusp. The equation of the free surface is cubic in (x, y) 
with coefficients depending on V, and with a cusp singularity when % = 00. 

The influence of gravity is considered through a stability analysis of the free 
surface subjected to converging uniform strain, and a necessary condition for the 
development of a finite-amplitude disturbance of the free surface is obtained. 

An experiment was carried out using the counter-rotating cylinders as described 
above, over a range of capillary numbers from zero to 60; the resulting photographs 
of a cross-section of the free surface are shown in figure 13. For SZ < Q,, a rounded 
crest forms in the neighbourhood of the central line of symmetry; for SZ > Q,, the 
downward-pointing cusp forms, and its structure shows good agreement with the 
foregoing theory. 

1. Introduction 
Some striking photographs of free-surface flows of both Newtonian and non- 

Newtonian fluids at low Reynolds numbers have been recently published in this 
Journal (Joseph et al. 1991, hereafter referred to as JNRR). These photographs 
provide compelling evidence for the formation of two-dimensional cusps on the free 
surface in regions of convergence of the flow to what would otherwise be a stagnation 
line. We have repeated the experiment of JNRR using a Newtonian fluid and a pair 
of counter-rotating cylinders, in the symmetric configuration of figure 1 (for 
experimental details, see $6). For very slow rotation rates, there is a stagnation line 
on the free surface, and in some circumstances a small rounded crest can form in the 
neighbourhood of this stagnation line (figure 1 a) .  (This phenomenon was noted in an 
early investigation by Griggs (1939) in a paper concerned with the process of 
mountain formation by convection in the underlying lithosphere. Griggs carried out 
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FIQURE 1. Experimental configuration showing the observed form of the free surface (a) when the 
rotation rate SZ is very small and (b) when SZ is larger. The range of SZ in the experiment was 0-7 s-l. 
The fluid used was polybutene, and the range of Reynolds numbers Re = a r : / v  was zero to 0.25 i 
the range of capillary numbers We., (see $6) was zero to 61.1, and of Froude numbers F r  = SZ(rJg)S 
zero to 0.34. The ratio ge,../Fr = ,u(r,g)i/y had the value 180. 

a similar experiment to that described here, but with the cylinders rotated manually 
and with a layer of a mixture of heavy oil and sand on the fluid surface to  simulate 
the Earth’s crust.) When the rotation rate IR is increased however, the surface dips 
downwards, and simple visual observation indicates the presence of a very sharp 
cusp on the free surface (figure l b ) .  If powder is sprinkled on the free surface, this 
powder is immediately swept through the cusp into the interior of the fluid. Thus, 
observation suggests that fluid particles on the free surface are similarly advected 
through the cusp into the interior. 

There are, however, certain fundamental difficulties in accepting this conclusion, 
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convincing though the observational evidence may appear to be. First, a cusp is a 
singularity of curvature, and one would expect this singularity to  be resolved by 
surface tension forces in its neighbourhood. JNRR proposed a solution in which the 
velocity is locally a small perturbation of a uniform stream U parallel to the (double) 
tangent at the cusp, the perturbation stream function being of the form $ = r'f ( O ) ,  
where h is a parameter dependent on the capillary number V = p U / y  (where p is 
viscosity, and y surface tension). We comment in more detail on this solution in the 
following sections ; for the moment it is sufficient to  recall JNRR's conclusion that 
when V = 00, then A = $j, and the cusp has the local form y - Ixlg. The correct 
boundary conditions are then satisfied everywhere except a t  the singularity x = 0 ,  
y = 0 itself, which is in a sense where most of the interest of the problem resides ! 
J N R R  refer to an earlier discussion of cusp-type singularities by Richardson (1968) 
who proposed a local solution of the form 

$ = -rlnrsin8, Y 
2 w  

(in plane polar coordinates) which is singular a t  r = 0, and is associated with a point 
force of magnitude 2y exerted by the free surface on the fluid directed along the 
tangent at the cusp and out of the fluid. This solution suffers from the serious 
difficulties that the associated velocity is O(ln r )  near r = 0, and the associated rate 
of dissipation of energy is infinite. Thus, although JNRR regard Richardson's 
solution as being valid in some extremely small neighbourhood of the cusp, this 
merely replaces one imperfection by another, and does nothing to resolve the real 
nature of the flow near the ' cusp ' in a viscous fluid with non-zero surface tension. 

There is a second major difficulty associated with the presence of the air outside 
the viscous liquid, which is subject to  the no-slip condition a t  the free surface. If the 
cusp is genuine and fluid particles on the free surface do move into the interior of the 
fluid, then air must be entrained into the interior also. There is however no evidence 
in the experiments for the entrainment of air bubbles (although small bubbles can of 
course be deliberately injected to provide indicators of particle paths and rate of 
strain). This is a paradox reminiscent of that  encountered in the famous moving 
contact-line problem (see, for example, Dussan V. & Davis 1974) in which strict 
application of the no-slip condition is in flat contradiction with both observation and 
common sense. 

The object of the present paper is to provide a complete analytical solution of a 
model problem which does indeed reveal the full nature of the flow and the extent 
to which a description in terms of a cusp is legitimate. The model problem is an 
idealization of figure 1,  in which the rotating cylinders are represented by a vortex 
dipole a t  fixed depth d (=  1) below the undisturbed position of the free surface (figure 
2a). The outer fluid boundaries are supposed moved to infinity, and we adopt the 
natural outer boundary condition u + 0 as 1x1 -+ 00. The resulting problem is solved 
using complex analysis and conformal mapping techniques. The solution does 
confirm the formation of a cusp in the limit % + co. For finite % however, the solution 
remains regular with a stagnation point on the free surface on the plane of symmetry. 
The radius of curvature R of the free surface a t  this stagnation point has the 
extraordinary behaviour 

Rld - exp{ - 327cV} (1.2) 
and is therefore extremely small when '% (defined by (2.24) below) is of order unity 
or greater. It is this behaviour that presumably leads to the extremely sharp cusp- 
like structures observed in experiments. 
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FIQURE 2. (a) Idealized problem showing deformation of the free surface r by a vortex dipole 
placed a t  z = x+ iy = - i. ( b )  The image configuration in the c-plane under the conformal mapping 
(2.26). 

2. The idealized problem 
Consider then the configuration of figure 2 ( a ) ,  in which the undisturbed fluid 

occupies the half-space y < 0. We place a vortex dipole of strength a at position 
z ( = x+ iy) = -id. Since d is the only lengthscale in the specification of the problem, 
i t  is natural to use d as the unit of length, i.e. we may take d = 1 in what follows, and 
the dipole singularity is then located a t  z = -i. The free surface r is then distorted 
by the resulting flow; we aim to determine its shape and the velocity field (u , v )  
throughout the fluid. We use a stream function @(x, y) with u = @g, v = -$z, and 
assume that the Reynolds number Re = a/dv is small so that 9 satisfies the 
biharmonic equation V4$ = 0. (The local Reynolds number near z = -i is not small, 
but this is of no consequence ; the flow is actually a potential flow in the immediate 
neighbourhood of z = - i ,  satisfying the full Navier-Stokes equation !) The free 
surface r is a stream surface of the flow ~ = const., on which the surface stress 
condition 

Y 
R ui,n, = -ni 

is satisfied, where uii is the stress tensor, n, the unit outward normal and R the radius 
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of curvature, taken positive if the centre of curvature is on the air side of the 
interface. 

It is well-known that @ can then be expressed in the form 

@ = Im ( f ( z ) + % W ) ,  (2.2) 

where the overbar represents the complex conjugate, and f(z),  g(z) are analytic 
functions at  all points z in the fluid domain 9 except at the singularity at z = -i 
where 

iu f (2) - z+i ( z  + -i). 

The velocity components are then given by 

u - iv = f’(z) + zg’ ( z )  - s(z), 
and the pressure (p) and vorticity ( w )  fields are given by 

p-ipw = 4pg’(z). (2.5 1 
It is easy to verify that, with these relations, the Stokes equation V p  = pV2u is 
satisfied in the fluid. The condition u, v -+ 0 as IzI + 00 are satisfied provided 

f - C Z ,  g - F  as I z I - t c o ,  (2.6) 

where c is an arbitrary constant. We shall find that the choice c = -iy/4p is 
appropriate. The symmetry conditions @ = 0, w = 0 on x = 0 clearly imply that 

Imf(iy) = 0, Reg(iy) = 0. (2.7 1 
As shown by Richardson (1968), the boundary conditions on r take the form 

f’(z)+zg‘(z)+gO = 

where s is the arclength on rmeasured from the point of symmetry B (figure 2a), and 
uo(z) is the (real) tangential velocity a t  an arbitrary point z of the free surface. 
Equation (2.9) is equivalent to (2.1). Manipulation of (2.8) and (2.9) yields the 
eauations [for Z E T )  

Im - g ( z )  = -, [O 1 L (2.10) 

and f (z )  +zg(z) = 0. (2.11) 

Equations (2.3), (2.6) and (2.8)-(2.11) constitute the essential boundary conditions 
that f ( z )  and g(z) must satisfy. 

Now let z = w(C) be the conformal mapping that maps the fluid domain 9 to the 
unit disc 9’: < 1 ,  and which places the (imaged) vortex dipole at C = 0, so that 
w(0) = -i (figure 2b). The points A, B, C, D of figure 2(a) map to the points A ,  B ,  
C’, D of figure 2(b). Let 

P(C) =f(w(C)) = f ( z ) ,  (2.12) 

G(C) = g(w(C)) = g(d9  

U(C) = uo(4C)) = U o ( 4 ,  

(2.13) 
(2.14) 
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so that (2.15) 

Moreover, if 1 ( =  i n - 0 )  represents arclength from B‘ on the unit circle, then by the 
conformal mapping property ds/dl= lw’(6)1, i t  follows that, for z E f ,  i.e. 161 = 1, 

and equivalently 

Hence the boundary conditions (2.8) and (2.9) become 

and 

Subtracting (2.18) from (2.19) and taking the complex conjugate gives 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Now ~ ’ ( 6 )  is analytic and non-zero in 151 < 1 ,  so that the left-hand side of (2.20) is 
analytic in 151 < 1 except a t  [ =  0. To remove this singularity, we subtract 
G(O)/[w’(O) from each side of (2.20): 

Now, the left-hand side is the boundary value of a function analytic in 161 < 1. If w(g) 
and C(0) can be found, then the real part of the right-hand side of (2.21) will be 
known, so that then C(5) may be found. 

The boundary conditions (2.3) and (2.11) transform in the 6-plane to 

(2.22) 
- 

F(6)  = -M6)  Q(6) on 161 = 1.  (2.23) 
These conditions together with the conditions (2.6) suggest the appropriate form for 
~ ( 5 ) .  Note first that if the capillary number, which we now define as 

W = ,ua/d2y, (2.24) 
is zero (i.e. y = a), then the free surface is flat, so that the appropriate mapping 
would be the bilinear mapping 

wJf) = i- (2.25) 

When %? > 0, the surface is distorted, but remains flat as 1x1 + co (i.e. as c+-i);  we 
are therefore led to try a mapping function of the form 

6-i 
c + i ’  

5-i 
C + i ’  

w(5) = a(c+i)+(a+l)i-  (2.26) 

where a is a real constant to be determined. This mapping tends to  bilinear form as 
(+ - i, and satisfies the condition w(0)  = - i as required. (By guessing w(g) in the form 
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(2.26), the boundary condition (2.22) can also be satisfied, as will be seen later.) We 
shall find that, for suitable choice of a (dependent on the capillary number W), we can 
satisfy all the conditions of the problem, so that (2.26) does indeed provide the 
required solution. 

Note first that, from (2.26), w(i) = 2ai, so that the point 5 = i is the image of 
z = 2ai, the point B in figure 2(a). Since this must lie above the vortex dipole at 
z = -i, we must have a > -+. Secondly, the function 

2(a+ 1) w’(6) = a-- 
(6+ i)2 

(2.27) 

must be non-zero in 161 < 1. The zeros of w’(g) are at 5 = -if (2(a+ l ) /a ) i ,  and it is 
easily shown that both roots lie outside the unit circle if either a < - 1 or a > -;. 
Together with the condition a > -$, we see therefore that the relevant range of a is 

a > - f ,  (2.28) 

and we note that as a+-+, a singularity appears on the boundary 151 = 1 and hence 
on r also. 

Substituting (2.26) in (2.23) (and using c= 1/<) now gives 

6-i P( g) = - {a  (1 - i) + (a + 1) i -} G( 5). 
C+l 

Hence, as [+O, F(5)  - -aG(O)/[, so that comparing with (2.22) we find 

- a i  - - a i  
G(0) = -- 

aw’(0) a(3aS-2) * 

(2.29) 

(2.30) 

This provides a first relation between G(0) and a. A second relation is needed to effect 
a complete solution. Note that G(0) is pure imaginary. 

Returning now to (2.21), the real part of the right-hand side is now known (apart 
from the real constant a) .  Hence by a well-known corollary of Cauchy’s integral 
theorem (Muskhelishvili 1953) we have that, for 151 < 1,  

where b is a real constant. The symmetry condition Reg(iy) = 0 in fact implies that 
b must be zero. Evaluating the second term of the integral in (2.31) and rearranging, 
we thus obtain 

(2.32) 

Consider now the behaviour of this expression as [ tends to a point on the unit circle. 
With 6, = eieo and 6 = eie, we have from (2.32) 

Recalling that G ( 0 )  is pure imaginary, we see that the real part of this expression is 
y/4plw’(c)l as required by (2.20). Comparing the imaginary parts of (2.20) and (2.33) 
we obtain an expression for the tangential free-surface velocity : 

uo(z) = U(5) = U(eie) 
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FIGURE 3. Graph of the function H(a) defined by (2.39). For each value of the capillary number %‘ 
(positive or negative) the real parameter a is uniquely determined by H(a)  = 4n%’ (equation (2.38)). 

Now, from (2.27), we may obtain 

(2.35) 

Hence uo(z) is given explicitly in terms of the parameter a, which is still unknown. 
This parameter may now however be determined from the condition that uo(z) + 0 

as z++m (i.e. as O+-$t in (2.34)). Near 8 =- in ,  we have 

(2.36) 

Hence the term in square brackets in (2.34) must certainly vanish as 8+-&, i.e. 

dB0 
Iw’(eieo)l (sin O0+ 1)  ’ 

(2.37) 

(Note that, since (2.36) has a simple pole and the term in square brackets in (2.34) 
has a double zero, uo(z)  does indeed tend to  zero at infinity.) 

Substituting (2.26), (2.30) and (2.35) into (2.37), we obtain an equation of the form 

4xpa 

Y 
H ( u )  = - = 4xv (2.38) 

from which a may be determined. The function H ( a )  is given (see Appendix A) by 

f - ~ ( 3 ~ + 2 ) ’  
,K (m)  for - i < a < O ,  

I 1  +a+ (-2a(a+ l ) ) T  

- ~ ( 3 ~ + 2 ) ’  
1 K(m’) for a 3 0, 

((a+ 1 )  (3a+ 1))s  

H ( a )  = (2.39) 

(2.40) 
2 

where m =  

and K is the complete elliptic integral of the first kind: 

(-Ba/(a+l))f+((a+ 1)/(-2U))i’ 

(2.41) 
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FIGURE 4. Streamlines and corresponding free-surface shape for various values of a. All streamlines 
pass through the singularity at (0, - l ) ,  and the streamlines near this point are circles touching the 
y-axis. (a )  a = -0.2, %? = 0.072; ( b )  a = 0, %? = 0 (potential flow with undisturbed free surface); (c) 
a = 0.2, V = -0.13; in this case (01 < 0) the flow is diverging on r a n d  the free surface is pushed 
upwards. 

The function H(a)  as given by (2.39) has been computed and is shown in figure 3. The 
asymptotic behaviour of this function is easily calculated : 

H ( a )  = -2na(l+$3)+O(a3) for a 6 1 ,  (2.42) 

H ( a )  - -Ca2, C = 3 k ( ( $ ) : )  w 10.54 as a+ 00, (2.43) 

as a+-i. 32 
3(3a+ 1 )  H(a)  - aln 3 (2.44) 

For given capillary number %?, the parameter a is uniquely determined by (2.38). 
Note that for V 3 0, a lies in the range -$ < a < 0, while for V < 0 (corresponding 
to a < O ) ,  a > 0. 

With a known, we can now complete the solution of the problem. First, from (2.32) 
and (2.37), we derive 

(2.46) 
2 dt 

( t -  5) (1 4 2 ) ;  [43a + 2) t 2  + 2a(2a+ 1) t+ a2+ (a  + 1)2$ * 
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FIQURE 5.  ( a )  As for figure 4, but with a = -0.3, 48 = 0.1 : ( h )  same figure expanded around the 
stagnation point on r. 

FIGURE 6. (a) As for figure 4, but with a = -!, 48 = m ; ( b )  same figure expanded around the 
cusp on r. 

This integral can be expressed in terms of complete elliptic integrals of the first and 
third kinds (see Appendix A). Now from ( 2 . 2 ) ,  (2.12), (2.13) and (2.29), the stream 
function $ is given in terms of G ( 5 )  by 

(2.47) 

from which the streamlines $ = const. may be plotted. Figures 4 4  show the 
streamlines for a range of values of a (with corresponding values of Gf? from figure 3). 
Note in particular the tendency to form a cusp as a+-i(Gf?+ co). 

3. The free surface 
The free surface r is given by z = ~ ( 5 )  with 5 = do, or, from (2.26), 

The real and imaginary parts give the equation of r in parametric form 

cos e 
x = acosO+(a+l)  

1 + sin 0 ' 
( 3 . 2 ~ )  

(3.2b) y = a ( l  +sine).  
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Elimination of 8 gives the equation of r as the cubic curve 

x2y = (2a-y) ( y + a +  1 ) 2 .  (3.3) 

This curve is sketched in figure 7 for a range of values of a ;  only the range a 3 -5 
is relevant to the problem studied here. When a = -$, the curve has a cusp with 
vertical tangent a t  x = 0, y = -8. 

For a > -g, the curve is locally parabolic near the point ( 0 , 2 a ) :  

(3a+ 1)* 
- 2a 2 2  z (Y -2a) .  (3.4) 

The radius of curvature at (0 ,2a)  is 

R = ( 3 ~ +  1)2 / (  - 4 ~ ) .  (3.5) 

As a+-%, the asymptotic form (2.44) together with (2.38) now gives (3a+ 1 )  - 
y e x p  { - 16nV}; hence, restoring the dimensional length d ,  R is given asymptotically 

(3.6) 

as stated in the Introduction. This asymptotic behaviour is reasonably accurate for 
59 2 0.1 (H(a)  2 1.2 in figure 3), and indicates extremely small values of R / d  when %? 
is of order unity. Even for %? = 0.1, we have R/d x 3.67 x while for V = 0.25, 
Rld x lo-', and for V = 1, R/d x 1.87 x Of course the continuum approxi- 
mation fails on such small lengthscales; from a continuum point of view, it seems 
fair to state that  when d is of order 1 m or less, a cusp does indeed form when V 2 0.25 
(giving Rld 5 lo-'). 

Putting a = -;+ e ,  we find from (3.3) that for e Q 1 and y+$ + e ,  the free-surface 
shape is 

If we further restrict y to the range for which E -% y + $  4 1 (so t,hat y x -$), then (3.7) 

Rld - y e x p  { - 32nV}, 
by 

x2y z -(y+8)3. (3.7) 

gives 

in agreement with the self similar form x - C@ obtained by JNRR, but with the 
added bonus that the coefficient C, which is undetermined in JNRR's local analysis, 
is here determined as F = ( g ) ;  x 1.225. This value of F is particular to the idealized 
vortex dipole problem ; in more general experimental configurations, F may be 
expected to depend on the dimensionless parameters defining the geometry (e.g. r , / d  
in the configuration of figure la) .  JNRR used a coordinate system in which the 
cusp opened along the negative x-axis, and their result, equivalent to (3.8) was 
y - EX:. Their experiments with STP, silicone oil and castor oil showed qualitative 
agreement with this theory, but the value of c was ill-determined. The capillary 
number used by JNRR is (using (3.12)) approximately 16 times the V that we use 
in the present paper; hence the value 59 = 0.25 corresponds to [%IJNRR x 4. in rough 
agreement with their critical value for cusp formation. 

I n  spite of the dependence of F on the geometry, the curves (3.7) and (3.8) when 
superposed on the photograph obtained in our experiment (figure 8) a t  a capillary 
number (V& = pQr, /y  x 60 exhibit a remarkable convergence to the observed 
form of the cusp. Agreement is not to be expected far from the cusp where the precise 
geometry of the experiment must certainly have some influence. The imperfection of 
the fit between theory and experiment at the very tip of the cusp may be due to 
imperfect scaling of the photograph. 
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0 0 

FIGURE 7.  The curve (3.3) for a = -;, -3 .  -0 .1 ,O .  +0.2. Only the curves corresponding to a 2 -3 
are physically relevant here. The curve is crisped for a = -$. For a 2 -;, the curve provides the 
free-surface shape a t  the capillary number given by figure 3. 

FIGURE 8. The asymptotic curves (3.7) and (3.8) superposed on the observed cusp in an experiment 
with WeXp = 52.4. The photograph is enlarged to  give the best fit with the curve x2y = - ( Y + # ) ~ .  

The curve (3.3) has a universal form when a = - + + e ,  0 < E < 1 .  This is obtained 
by the substitutions 

Retaining only leading-order contributions (of order c3) ,  this yields the curve 
z = e”, Y = y-2a = €7. (3.9) 

t2 = $T(T + 3Y, (3.10) 

which exhibits the parabolic behaviour E2 - $7 for r,~ < 1,  and the cuspidal behaviour 
E2 - $q3 for 7 $ 1 (figure 9). The curve (3.10) has inflexion points a t  q = 1,  5 = f 2  4 6  
marking the transition between these regimes. 

Consider now the tangential velocity uo(z) on r, which is given from (2.34) and 
(2.37) by 

1 1 1 
-uo(z) = -U(eU) = --(1+sin8)cos8~w’(ei8)~z(sin8;a) 
a a 4n% 

(3.11) 

where Z is still as defined by (2.46) (where the principal value must now be used). 
With 0 related to x by (3.2a), (3.11) determines uo/a implicitly as a function of x. 
This function is shown in figure 10 for various values of a in the range 
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5 t  

Inflexion uoint 

5 
Parabolic ’ regime 

FIQURE 9. The universal curve t2 = b(?+3)2 representing transition from 
parabolic to cuspidal regimes. 

-0.1 0 0.2 
L 1 -- 1 / 1 1  2 X 

FIQURE 10. The tangential velocity uo(x) on r normalized with respect to the strength u of the 
vortex dipole, for a = -4, -0.3, -0.2, -0.1,0,0.2. Note the singular structure as a+-$, and the 
limiting value u,(O)/u = f 16. 

-f < a < 0.2(co 2 V 2 -0.13). The curve corresponding to a = 0 coincides with 
that obtained by a linearized analysis (Appendix B, equation (B 16)). The free- 
surface velocity is directed towards or away from the stagnation point on the free 
surface according as a < or > 0. A singular structure is evident as E = a+$+ 0, with 
rapid deceleration in the region 1x1 = O ( d )  where the cuspidal shape of the free surface 
gives way to the parabolic shape. Note the limiting behaviour 

lim lim (u0/a) = f 16, 
(+O E’O 

(3.12) 

indicating that the (dimensional) fluid velocity through the cusp into the fluid 
interior has magnitude 16a/d2. As noted above, for any capillary number greater 
than about 0.25, the parameter e is extremely small, and this limiting description 
must certainly be appropriate. 

We may note that, when V 2 0.25, the ‘parabolic region’ is on a submicron scale, 
so that the question of whether fluid particles on the free surface do or do not move 
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into the interior of the fluid has a rather philosophical character. In situations such 
as this where the continuum approximation breaks down, the concept of a fluid 
particle is ill-defined, and the true behaviour in the neighbourhood of the cusp must 
surely require consideration of intermolecular forces and related non-continuum 
effects. The same comment applies to the behaviour of the air trapped in the cusp 
region. These considerations are unlikely, however, to affect the 'outer' cusp 
dynamics, and the shape of the cusp as given by (3.8). 

4. Asymptotic form of stream function as a -+ -$ 
We have already seen in (2.44) that the function H ( a )  has a logarithmic singularity 

as a+-& (i.e. %+ 00) .  The same singularity appears in the function 1((5-5-1)/2i;a) 
appearing in the solution for G(5) (equation (2.45)) : 

as a+- l  
32 

In 3 

1($$2;a) - -~ 6i5 
(5-i)2 3(3a+l )  

(see Appendix A). Hence from (2.45), 

and so from (2.47), 
G(5) - -ia(5+3i) (5+i), 

with g related to z ,  when a = -5,  by 

Near the cusp point 5 = i ( z  = -$i), (4.4) becomes 

i 
z+$i x G(5-i)2+ ... 

(4.3) 

(4.5) 

and, with z + %i = ir eis (so that r is distance from the cusp and 8 is measured from the 
direction of the cusp tangent), (4.3) gives the asymptotic form of $ near the cusp as 

$ - 16ax:-8 2/6arisin3 ($9) (-n < 8 < x), (4.6) 
agreeing with the local similarity solution proposed by JNRR (at least when % = 00). 

This stream function represents the uniform stream -16a into the fluid, with a 
superposed perturbation velocity of order ri near r = 0. Note however that the 
associated rate of strain is O(r-;) .  This is resolved on the scale r = O ( E )  = O(e-16"'). 
Hence a maximum strain rate of order eEaY is implied. The corresponding stress in the 
fluid is extremely large for quite modest values of %. However, the O(r-') singularity 
in the rate of viscous dissipation is integrable. 

5. Influence of gravity 
It is obvious that, in an experiment like that of figure 1, gravity exerts a stabilizing 

influence on the free surface, tending to  keep it horizontal against the influence of 
viscous stresses. The effect of gravity was neglected in the model problem of 52. We 
may however estimate its effect by a local stability analysis similar to  that used by 
Lister (1989) in a rather similar axisymmetric situation. 
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We consider the stability of the free surface y = 0 under the action of the 
converging uniform strain 

u= (-sx,sy). (5.1) 

Consider a disturbance of the free surface of the form 

y = ~ ( x ,  t )  = lj(t) eiL(t)z. 

k(t) = koest, It is obvious that 

due to the compression of the wave-form (figure 11 a). If gravity and surface tension 
were absent, then the disturbance amplitude lj(t) would also increase as est, a purely 
kinematic effect. Both gravity and surface tension have a countervailing influence. 

The stream function @(x, y, t ) ,  satisfying V4$ = 0 and @ + 0 as y+ - 00, may 
readily be shown to have the form 

(5.4) 

and the (linearized) kinematic boundary condition DF/Dt = 0 on y = ~ ( x ,  t )  where 
F = y - ~ ( x ,  t )  gives 

(5.5) 

@ = (A +By) ekY ellcz, 

_ -  " - slj-ikA. 
dt 

The tangential stress is zero on y = 7 ; hence 

B = -2islj. 

The linearized normal stress condition grin = ya2V/ax2 on y = 7 yields 

Hence, from (5.5) and (5.7), 
2ik2pA = (yk2+pg)lj. 

where 

(5.7) 

(5.9) 

The form of the curve Z = Z(K)  is shown in figure 11 (b )  for various values of S. Note 
that Z,,, = S-  1, so that Z is positive for a range of wavenumbers if 

S >  1. (5.10) 

As a disturbance of initially large wavelength (small k) is compressed, it is then 
exponentially amplified as its wavenumber k(t) passes through this unstable range. 
We may regard (5.10) as a necessary condition for the development of a finite- 
amplitude disturbance of the interface in a neighbourhood of x = 0. 

If the condition (5.10) is satisfied, and if a depression of the free surface forms a t  
x = 0, then the local strain rate tends to increase. In fact, as discussed in $4, a 
maximum strain rate of order ad-* eSnY may be expected in the parabolic region. This 
suggests that when the disturbance grows into the nonlinear regime, the local strain 
rate s may in fact increase in such a way as to keep in step with the increasing effect 
of surface tension near the stagnation point. Certainly, gravity becomes insignificant 
in this neighbourhood, and the results of the previous sections may be expected to 
be asymptotically valid near x = 0 even when gravity is present. 

Note that, as shown in figure 13 and described in the following section, i t  is also 
possible for a crest to appear a t  x = 0 when the strain rate s is small. The linearized 
analysis of Appendix B indicates that this occurs when the horizontal separation of 
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y = i(f) cos k ( f ) X  

z -  

1 -  

K 

- 1  

-2 

- 3  

Stable 

-4- 

FIQURE 1 1 .  (a )  Compression of free-surface wave form under the action of uniform strain ; (b) the 
dispersion relation (5.9) showing an unstable range of wavenumbers when the condition (5.10) is 
satisfied. 

the vortices representing the rotating cylinders is greater than 2d. The shape of the 
crest is (presumably) influenced by both gravity and surface tension. 

6. Experimental details 
The experiment depicted in figure 1 was carried out in a Perspex box of horizontal 

dimensions 250 x 250 mm. The radius of each cylinder is rc = 23 mm and the 
separation of centres is 2c = 100 mm. The depth of fluid d is of course variable; we 
used d = 40 mm for the experiment described here. The speed of rotation of the two 
cylinders can be independently varied, but we focus here on the symmetric situation 
with angular velocities +a, and Q in the range zero to approximately 7 s-l. The 
Froude number Fr = Q(r, /g)$ was then in the range [0,0.34]. 

The fluid used was a reasonably Newtonian polybutene of density p = 883 kg/m3, 
viscosity ,u = 12.9 kg m-' s-l and surface tension y = 0.034 N m-l. The range of 
Reynolds numbers Re = pSZr:/,u, was [ 0 , 0 . 2 5 ] ,  so that the low-Reynolds-number 
approximation Re < 1 is applicable. The range of capillary number WeXp = ,uQr,/y 
was [0,61.1]. The flow is accurately two-dimensional except in layers on the front and 
rear walls of the box where the no-slip condition is satisfied. The free surface was 
illuminated by a weak diffuse source of light from behind the box and this enabled 
photographs of the free surface shape with the camera positioned as in figure 12. 
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amera 
lens 

FIGURE 12. Configuration of light source and camera in the experiment; note that the total 
internal reflection of light from the free surface in the rear-wall layer means that no light reaches 
the camera lens from the region of air immediately above the free surface. 

Total internal reflection of light from the free surface in the rear boundary layer 
means that no light gets to the camera from the air just above the free surface, and 
this region therefore appears black in the photographs. The ratio Wexp/Fr = p(rC g)i /y  
had the value 180. 

The sequence of photographs (u-h) in figure 13 shows the effect of increasing the 
angular velocity slowly from zero. For small values of 52, there is a crest at x = 0, and 
as 0 increases this crest is progressively more concentrated near x =  0. As 52 
approaches a critical value a,, the crest disappears and for SZ > SZ,, a downward- 
pointing cusp appears on the free surface. The Froude number at  which this 
transition took place was Fr, = 0.136, and the capillary number was We x 24. With 
further increase of 0, the cusp becomes more pronounced, but there is no further 
qualitative change in the flow structure for the range of 0 covered by this 
experiment. Further experiments using a range of different fluids, and varying the 
cylinder radius rc,  are needed to determine the locus in the (Fr,  %?)-plane where the 
transition from crest to cusp occurs. 

As indicated previously (figure 8), the form of the cusp is well represented by the 
equation x2 = c 2 P  with c = (t): (although since this value of c was determined for the 
idealized dipole configuration, the agreement is to some extent fortuitous). 

The similarity solution for cusp flow given by JNRR gave a cusp of the form 
x - cY* where A is a function of W tending to g as %?+ co. Our exact solution of the 
vortex dipole problem gives h = $ even for finite 59 (see the universal behaviour of 
figure 9) ; this means that the flow in the immediate neighbourhood of the cusp (i.e. 
the parabolic region) has an important effect on the cuspidal region where the free- 
surface behaviour x * cu'y is valid. There are some similarities here with the problem 
of viscous fingering (Saffman 1986), for which the gross properties of the fingers are 
sensitively dependent on conditions very near the tip. 

This work was motivated by observations of a flow exhibiting what looked like a 
cusp during a visit of one of us (H.K.M) to the Ecole Normale Superieure in Lyon 
at  the invitation of Stefan Fauve in June 1990. The work described in $55 and 6 of 
this paper was presented at the British Theoretical Mechanics Colloquium in Oxford 
in April 1991, and we gratefully acknowledge the helpful comments of Philip Drazin, 
Alex Craik and others following this presentation ; also the equally helpful comments 
of John Lister and other colleagues at DAMTP who have taken an interest in the 
experiment. We thank David Cheesley for helping in the design of the experiment 
and for constructing the apparatus; and Jason Newling for help with the 
photography. J.-T. J. has been financed by a Fellowship of the Korea Science and 
Engineering Foundation 1990. 
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Appendix A. Calculation of some integrals required in $2 

obtain H ( a )  = 4npa/y where 
Substituting w'(0) = 3a+2 from (2.27), G(0) from (2.30), and (2.35) into (2.37), we 

(A 1) 

Evaluating the integral (see, for example, Gradshteyn & Ryzhik 1980), (A 1) can be 
reduced to (2.39). Now, consider (2.46), where the integral can be expressed in terms 
of complete elliptic integrals as follows 

H ( u )  = - & ( 3 ~ + 2 ) ~  do0 
[a(3a + 2) sinzoo + 2a(2a + 1) sin 0, + a2+ (a + 1)21;. 

2 dt 
I(" = ll ( t -  5) (1 -t2); [a(3a+ 2) t2 + 2a(2a+ 1) t+a2 + (a+ 1)2]; 

for -4  < a  G O ,  = I  

for a 2 0, (A 2) 

-42a + 1) + (a+ 1) (-2a(a+ 1)); 
where t, = 

a(3a + 2) 

2(C- tl)  (aC+ 2a+ 1)2 n =  (c+ 1) (1 -tl)  ' = (1 -c) (a+ 1) (3a+ 1) ' 

and m, m' are defined in (2.40). In (A 2 ) ,  K(m) and n(n, m) are complete elliptic 
integrals of the first and third kinds (Gradshteyn & Ryzhik 1980; Byrd & Friedman 
1971) : 

dx 
(1 -m2sin2o)t - -I' , [(i -x2) (1 -m2x2)lt ' 

K ( m )  = 

Appendix B. Linearized analysis for a small perturbation of the free 
surface 

Consider the flow due to vortices of strengths + K  placed at  (Tc, -1) respect- 
ively, in otherwise quiescent fluid. Suppose that the free surface is y = q(x), where 
7( f 00) = 0 and 7 and 7' are both assumed small. We include here the effects of both 
gravity and surface tension, represented by the non-dimensional numbers 

G = pg/2pK, % = 2,UK/y. (B 1) 

@ = 0,  czz/ - 0  - on y=O,  (B 2) 

The linearized form of the boundary conditions at  the free surface is 
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and u y y  = yrl"(4 on y = r l ( 4 ,  (B 3) 

(fJyy)y-7 = - (P)p7 + 21L(a,t)/a?/)r-o = PQrl- 21LU(a2wx W y - 0 .  (B 4) where 

(potential) flow satisfying (B 2) is 
With image vortices f K a t  ( + c ,  1)  respectively, the stream function for the 

{(z-c)'+ (y- l)'}{(x+c)'+ (y + 1)2}  

{ (x+ c)2+ (y- 1 ) 2 }  { (x- c)' + (y + 1)') 
$(x, y) = ;K In 

and the conditions (B 3), (B 4) may then be combined to give the equation for y(z): 

W-'f- Gy = - K - ~  duo/dx, (B 6) 

where 

the tangential velocity on the free surface. 
The solution is 

11(4 = ;w7(x) +9( -41 

where 

and /3 = (WG);. It will be sufficient to consider two limiting cases. 
(i) /3 4 1 
In this limit, 

g(x) x -2tan-' (x+c)+2 tanp1 ( x - C )  (B 10) 

so that ~ ( x )  = -2W{tan-'(x+c)-tan-' (x-c)}. (B 11) 

Figure 14 shows the free-surface shape for c = 1. 

gives (with % = ,ua/y) 
In the special limit of a vortex dipole (c - t  0, K +  co with ~ C K  = a = const.), (B 11) 

- 4% 
r l ( 4  - - x2+ 1 

which agrees with the limiting form of (3.3) when l%l 4 1, namely 

2a -4% 
y - 2 T l - m  

since a - -2% when [%I is small. Figure 14 also shows the limiting form (B 12). 
(ii) p-+ co 
In this limit, (B 6) gives immediately 7 = C-'~-ldu,/dx, i.e. 

8~ (x2 + c2 + 1)  (c' + 1 - 32') + 4 ~ ~ 2 '  ' = -?? 
((2' +c2 + 1)2-4c2x2}2 

A crest is present at x = 0 only for c > 1. Figure 15 shows this form of the free surface 
for c = 2 and 0.5 and for the limiting dipole case (c  -+ 0, ~ C K  = a) for which 

with G = pg/,uu. 
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I Y  
==F==x -0.5 

FIGURE 14. Linearized free-surface shape when B 4 1 ,  W = 0.05, for c = 1 and for the dipole 
limit c + 0. 

‘ ty c = 2  

c+o 

- 1  

FIGURE 15. Linearized free-surface shape when p B 1,  G = 20, for c = 2,0.5 and for the dipole 
limit c + 0. 

Finally, note that in the dipole limit (B 7)  becomes 

4ax 
uo(x)  - -~ 

( x 2 +  1 ) 2  

which as expected agrees with the limiting form of (3.11) as a+O. 

Note added in proof. Following a seminar in DAMTP on the topic of this paper, 
Dr John Hinch provided the following simple and elegant explanation for the 
exponential dependence (3.6) of radius of curvature R on capillary number W :  

The surface tension exerts a force 2y  per unit length of cusp on the fluid in the cusp 
region. This creates a Stokes flow with stream function ( 1 . 1 )  and associated upward 
velocity on x = 0 

for some dimensionless constant cl. At a distance &i from the vortex dipole (i.e. in the 
peighbourhood of the location where the cusp forms) there is a downward flow which 
would be 8.64a/d2 if the free surface were flat, but is in fact increased to c 2 a / d 2  
(c,  > 8.64) due to the downward ‘streamlining’ of the free-surface shape. These two 
flows must balance at r = R where the free surface is stationary; this balance of 
vertical velocity gives 

r = c1 d exp { - 2cnpa/d2y} = c1 d exp ( - 2c, nW). 

The exact solution shows that in fact c1 = and c2 = 16. Note that the Stokeslet 
singularity is at a distance R above the free surface (outside the fluid). The 
combination of Stokeslet and uniform stream gives the ‘rear stagnation point’ flow 
in the parabolic region. 
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